Publications

VI Lab

Current (2015~)

Imagination-augmented Hierarchical Reinforcement Learning for Safe and Interactive Autonomous Driving in Urban Environments
Journal
IEEE Transactions on Intelligent Transportation Systems (T-ITS)
Author
Sang-Hyun Lee, Yoonjae Jung, Seung-Woo Seo
Class of publication
International Journal
Date
September, 2024
Hierarchical reinforcement learning (HRL) has led to remarkable achievements in diverse fields. However, existing HRL algorithms still cannot be applied to real-world navigation tasks. These tasks require an agent to perform safety-aware behaviors and interact with surrounding objects in dynamic environments. In addition, an agent in these tasks should perform consistent and structured exploration as they are long-horizon and have complex structures with diverse objects and task-specific rules. Designing HRL agents that can handle these challenges in real-world navigation tasks is an open problem. In this paper, we propose imagination-augmented HRL (IAHRL), a new and general navigation algorithm that allows an agent to learn safe and interactive behaviors in real-world navigation tasks. Our key idea is to train a hierarchical agent in which a high-level policy infers interactions by interpreting behaviors imagined with low-level policies. Specifically, the high-level policy is designed with a permutation-invariant attention mechanism to determine which low-level policy generates the most interactive behavior, and the low-level policies are implemented with an optimization-based behavior planner to generate safe and structured behaviors following task-specific rules. To evaluate our algorithm, we introduce five complex urban driving tasks, which are among the most challenging real-world navigation tasks. The experimental results indicate that our hierarchical agent performs safety-aware behaviors and properly interacts with surrounding vehicles, achieving higher success rates and lower average episode steps than baselines in urban …